

Concepteur de solutions didactiques

ERM AUTOMATISMES INDUSTRIELS

561, allée de Bellecour Tél : 04 90 60 05 68 84200 Carpentras Fax : 04 90 60 66 26

Site: www.erm-automatismes.com
E-mail: contact@erm-automatismes.com

SMART STOCK FK10

BAC PRO MELEC

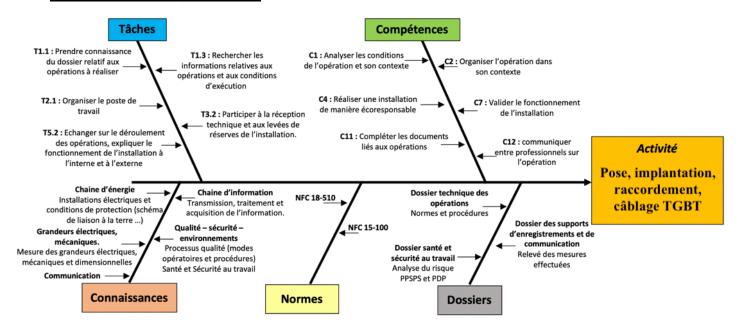
ACTIVITE DE REALISATION D'INSTALLATION

SECONDE 3^{EME} TRIMESTRE

POSE, IMPLANTATION, RACCORDEMENT ET CABLAGE DU TGBT

DOSSIER PEDAGOGIQUE

1 0	RGANISATION PEDAGOGIQUE :	1
1.1	Données pédagogiques	1
1.2	Mise en situation	1
1.3	Secteur d'activité	1
1.4	Objectifs pédagogiques	1
	Critères d'évaluation	
1.6	Compétences évaluées sur CPro STI	2
1.7	Observations	2
2 IN	MPLANTATION ET CABLAGE DU TGBT	3
2.1	Implanter les composants du tableau	4
2.2	Raccorder et câbler le TGBT AC du système de stockage réseau	
2.3	Réaliser les contrôles hors tension avant mise en service	
2.4	Conclusion sur la réalisation.	8


ACTIVITE / SCENARIO

Câblage du TGBT

1 ORGANISATION PEDAGOGIQUE:

1.1 Données pédagogiques

1.2 Mise en situation

Le bon fonctionnement du réseau électrique dépend de l'équilibre entre l'offre et la demande. Un équilibre que la poussée des énergies renouvelables rend de plus en plus difficile à maintenir. La solution envisagée par les spécialistes est de développer les moyens de stockage de l'électricité.

Longtemps, les producteurs d'électricité ont été en capacité d'adapter, avec plus ou moins d'efficacité, leur offre à la demande des consommateurs. Avec un schéma de fabrication centralisé, des moyens de production relativement flexibles et des stocks disponibles d'énergie fossile, la tâche était réalisable. Depuis peu, le consommateur a été mis à contribution, par le biais de tarifs incitatifs, par exemple, ou plus récemment, via des compteurs intelligents qui permettent de procéder à des effacements de consommation.

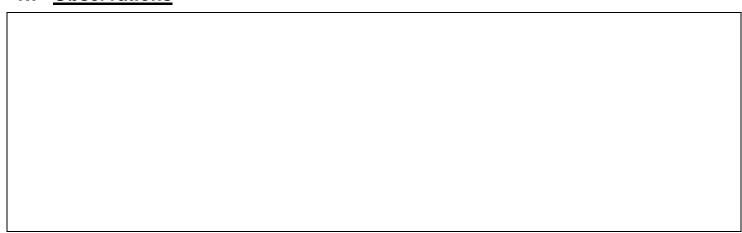
Le vrai problème commence à se poser avec le développement considérable, depuis quelques années, de la production d'énergie renouvelable (EnR) et notamment d'énergie éolienne ou d'énergie solaire. Même si elles sont de plus en plus prévisibles, ces sources d'énergie ne seront jamais programmables puisque nous ne pourrons jamais commander au soleil de briller ou au vent de souffler. Ces EnR sont par nature intermittentes et, qui plus est, leur production n'est généralement pas centralisée. Pour continuer à assurer à tout moment et en tout lieu l'équilibre entre l'offre et la demande en électricité, il semble indispensable de développer des solutions pour stocker cette énergie.

1.3 Secteur d'activité

Secteurs: « Infrastructures » et « quartiers ».

1.4 Objectifs pédagogiques

L'élève pose, implante, raccorde et câble le TGBT du système de stockage batterie


1.5 Critères d'évaluation

	APTITUDES PROFESSIONNELLES	(3)	(1)	9
AP1	Faire preuve de rigueur et de précision			
AP2	Faire preuve d'esprit d'équipe			
AP3	Faire preuve de curiosité et d'écoute			
AP4	Faire preuve d'initiative			
AP5	Faire preuve d'analyse critique			

1.6 Compétences évaluées sur CPro STI

~	A NE	_==
C1-CO1 Analyser les conditions de l'opération et son contexte		
Les informations nécessaires sont recueillies		
Les contraintes techniques et d'exécution sont repérées		
Les risques professionnels sont évalués		
C2-CO2 Organiser l'opération dans son contexte		
Après inventaire, les matériels, équipements et outillages manquants sont listés		
Le poste de travail est organisé avec ergonomie		
C4-CO3 Réaliser une installation de manière éco-responsable		
Les câblages et les raccordements sont réalisés conformément aux prescriptions et règles de l'art		
Les autocontrôles sont réalisés et les fiches d'autocontrôles sont complétées		
C7-CO5 Valider le fonctionnement de l'installation		
Le fonctionnement est conforme aux spécifications du cahier des charges (y compris celles liées à l'efficacité énergétique)		
C11 Compléter les documents liés aux opérations		
Les informations nécessaires sont identifiées		
C12-C08 Communiquer entre professionnels sur l'opération		
Les contraintes techniques liées à la performance énergétique de l'installation sont expliquées		
Les difficultés sont remontées à la hiérarchie		

1.7 Observations

2 IMPLANTATION ET CABLAGE DU TGBT

En vous aidant, du schéma développé de l'installation, vous aurez à raccorder le TGBT du Smart Stock, cela comprendra la totalité des éléments du tableau général basse tension courant alternatif (TGBT AC).

2.1 <u>Implanter les composants du tableau</u>

En tenant compte de la photo d'implantation de l'armoire ci-dessus. Remplir le tableau suivant permettant de contrôler la conformité du matériel. Matériels à mettre en place dans le TGBT.

Appareils	Désignation	Présence	État Matériel	CE et/ou NF	Positionnement correct
Q0	Socomec Interrupteur sectionneur Sirco M 16A, 690VAC, 400 VDC, DC-21A/ DC-21B Contact O+F signalisation sectionneur M1-MV Ref : 22053000 + 22990001	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
H1	Schneider Voyant lumineux blanc Présence tension A9E18322	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q1	Schneider Disjoncteur magnéto-thermique différentiel C16A 30mA Type AC A9N21202	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q2	Schneider Disjoncteur magnéto-thermique C6A 1P+N A9N21023	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q3	Schneider Sectionneur fusible à tiroir 2P 10,3 x 38 mm 16A type gG A9N15651	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q4	Schneider Sectionneur fusible à tiroir 2P 10,3 x 38 mm 16A type gG A9N15651	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q5	Schneider Disjoncteur magnéto-thermique C16A 1P+N A9N21023	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q6	Schneider Disjoncteur magnéto-thermique différentiel C16A 30mA Type AC A9N21202	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q7	Schneider Disjoncteur magnéto-thermique différentiel C16A 30mA Type AC A9N21202	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
MOD1	Ziehl Relais de tension et de fréquence Contrôleur réseau UFR1001E	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
PF1	Citel Parafoudre In : 5kA / Imax : 15kA DS215-230/G	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
P1	Carlo Gavazzi Compteur d'énergie ET112	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
KM1	Schneider Contacteur à raccordement rapide 25A 2P contact 2F bobine 230V A9C15185	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
KM2	Schneider Contacteur à raccordement rapide 25A 2P contact 2F bobine 230V A9C15185	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
XP1	Schneider Prise de courant modulaire avec voyant 16A 2P+T 250V A9A15307	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
XP2	Schneider Prise de courant modulaire avec voyant 16A 2P+T 250V A9A15307	□ OUI □ NON	□ ok □ nok	□ CE □ NF	□ OUI □ NON

2.2 Raccorder et câbler le TGBT AC du système de stockage réseau.

En tenant compte du tableau de raccordement définissant les sections et les bornes des différents conducteurs, réaliser le câblage du tableau. (A l'aide du schéma fournit SCFK1000001_.pdf). Le câble d'alimentation de l'ensemble ne sera pas raccordé pendant cette phase.

Pour ne pas se tromper penser à surligner sur le schéma chaque conducteur posé.

Repère du conducteur	Couleur	Section	Tenant	Aboutissant	Connexion réalisée	Problèmes rencontrés
108	NOIR	2,5 mm²	Borne 4 en aval de Q0	Borne X2 de H1	□ OUI □ NON	
110	BLEU	2,5 mm²	Borne 2 en aval de Q0	Borne X1 de H1	□ OUI □ NON	
108	NOIR	2,5 mm²	Borne 4 en aval de Q0	Borne 1 en amont de Q1	□ OUI □ NON	
110	BLEU	2,5 mm²	Borne 2 en aval de Q0	Borne 3 en amont de Q1	□ OUI □ NON	
113	NOIR	2,5 mm²	Borne 4 en aval de Q1	Borne N en amont de Q2	□ OUI □ NON	
104	BLEU	2,5 mm²	Borne 2 en aval de Q1	Borne 1 en amont de Q2	□ OUI □ NON	
113	NOIR	2,5 mm²	Borne N en amont de Q2	Borne N en amont de Q3	□ OUI □ NON	
104	BLEU	2,5 mm ²	Borne 1 en amont de Q2	Borne 1 en amont de Q3	□ OUI □ NON	
113	NOIR	2,5 mm ²	Borne N en amont de Q3	Borne N en amont de Q4	□ OUI □ NON	
104	BLEU	2,5 mm²	Borne 1 en amont de Q3	Borne 1 en amont de Q4	□ OUI □ NON	
113	NOIR	2,5 mm ²	Borne N en amont de Q4	Borne Nîì de P1	□ OUI □ NON	
104	BLEU	2,5 mm²	Borne 1 en amont de Q4	Borne 1⋂ de P1	□ OUI □ NON	
121	BLEU	2,5 mm²	Borne N∜ de P1	Borne 1 en amont de KM1	□ OUI □ NON	
124	NOIR	2,5 mm²	Borne 2 [↓] de P1	Borne 3 en amont de KM1	□ OUI □ NON	
128	BLEU	2,5 mm²	Borne 2 en aval de KM1	Borne 1 en amont de KM2	□ OUI □ NON	
127	NOIR	2,5 mm²	Borne 4 en aval de KM1	Borne 3 en amont de KM2	□ OUI □ NON	
131	BLEU	2,5 mm²	Borne 2 en aval de KM2	Borne N en amont de Q5	□ OUI □ NON	
133	NOIR	2,5 mm²	Borne 4 en aval de KM2	Borne 1 en amont de Q5	□ OUI □ NON	
131	BLEU	2,5 mm²	Borne N en amont de Q5	Borne 1 en amont de Q7	□ OUI □ NON	
133	NOIR	2,5 mm²	Borne 1 en amont de Q5	Borne 3 en amont de Q7	□ OUI □ NON	
184	BLEU	2,5 mm ²	Borne 2 en aval de Q7	Borne N de XP2	□ OUI □ NON	

Repère du conducteur	Couleur	Section	Tenant	Aboutissant	Connexion réalisée	Problèmes rencontrés
183	NOIR	2,5 mm²	Borne 4 en aval de Q7	Borne L de XP2	□ OUI □ NON	
	Vert Jaune	2,5 mm²	Borne PE de XP2	Borne PE de XP1	□ OUI □ NON	
	Vert Jaune	2,5 mm²	Borne PE de XP1	Bornier PE de TGBT	□ OUI □ NON	
186	BLEU	2,5 mm²	Borne 2 en aval de Q6	Borne N de XP1	□ OUI □ NON	
185	NOIR	2,5 mm ²	Borne 4 en aval de Q6	Borne L de XP1	□ OUI □ NON	
186	BLEU	2,5 mm²	Borne N de XP1	Borne X1.2	□ OUI □ NON	
185	NOIR	2,5 mm²	Borne L de XP1	Borne X1.1	□ OUI □ NON	
111	BLEU	2,5 mm²	Borne 2 en aval de Q3	Borne N de PF1	□ OUI □ NON	
112	NOIR	2,5 mm²	Borne 4 en aval de Q3	Borne L de PF1	□ OUI □ NON	
	Vert Jaune	6 mm²	Borne PE de PF1	Bornier PE de TGBT	□ OUI □ NON	
103	BLEU	1,5 mm²	Borne 2 en aval de Q4	Borne N de MOD1	□ OUI □ NON	
118	NOIR	1,5 mm²	Borne 4 en aval de Q4	Borne L3 de MOD1	□ OUI □ NON	
118	NOIR	1,5 mm²	Borne L3 de MOD1	Borne L2 de MOD1	□ OUI □ NON	
118	NOIR	1,5 mm²	Borne L2 de MOD1	Borne L1 de MOD1	□ OUI □ NON	
105	BLEU	1,5 mm²	Borne N en aval de Q2	Borne A1 de MOD1	□ OUI □ NON	
109	NOIR	1,5 mm²	Borne 2 en aval de Q2	Borne A2 de MOD1	□ OUI □ NON	
105	BLEU	1,5 mm²	Borne N en aval de Q2	Borne A2 de KM1	□ OUI □ NON	
105	BLEU	1,5 mm²	Borne A2 de KM1	Borne A2 de KM2	□ OUI □ NON	
109	NOIR	1,5 mm²	Borne 2 en aval de Q2	Borne en amont de X1.3	□ OUI □ NON	
Pont	NOIR	1,5 mm²	Borne en aval de X1.3	Borne en aval de X1.4	□ OUI □ NON	
115	NOIR	1,5 mm²	Borne en amont de X1.4	Borne 11 de MOD1	□ OUI □ NON	
115	NOIR	1,5 mm²	Borne 11 de MOD1	Borne 21 de MOD1	□ OUI □ NON	
117	NOIR	1,5 mm²	Borne 14 de MOD1	Borne A1 de KM2	□ OUI □ NON	
119	NOIR	1,5 mm²	Borne 24 de MOD1	Borne A1 de KM1	□ OUI □ NON	

2.3 Réaliser les contrôles hors tension avant mise en service.

A	
Λ	•
1	_

L'ouvrage ne doit pas être raccordé au réseau ou doit être consigné par le chargé de consignation

2.3.1 Contrôle visuel de l'installation :

Aucun conducteur tendu, conducteurs bien rangés, les conducteurs de puissance au fond, appareillages et conducteurs repérés et les couleurs respectées, Aucune partie de cuivre n'est visible, présence des capots.

Conforme	Identifier les défauts

2.3.2 Contrôle de l'absence de court-circuit :

A l'aide d'un multimètre positionné sur testeur de continuité, ouvrir toutes les protections Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, vérifier l'absence de court-circuit de la partie de puissance et d'alimentation entre les bornes suivantes :

Nom	Borne	Borne	Absence de court- circuit	Commentaires
Q0	Borne 2	Borne 4		
Q1	Borne 2	Borne 4		
Q2	Borne N	Borne 2		
Q3	Borne 2	Borne 4		
Q4	Borne 2	Borne 4		
Q5	Borne N	Borne 2		
Q6	Borne 2	Borne 4		
Q7	Borne 2	Borne 4		

Quels sont les problèmes rencontrés lors du contrôle ?

Défauts rencontrés	

2.3.3 Contrôle de l'équipotentialité des masses

A l'aide d'un multimètre positionné sur testeur de continuité vérifier que l'ensemble des masses et des conducteurs PE sont bien interconnectés, vérifier le serrage des PE.

Borne 1	Borne 2	Continuité	Commentaires
Bornier PE TGBT	PE de PF1	□ OUI □ NON	
Bornier PE TGBT	PE de XP1	□ OUI □ NON	
Bornier PE TGBT	PE de XP2	□ OUI □ NON	

2.3.4 Contrôle d'isolement :

A l'aide d'un mégohmmètre CATU DT500, Q2 et Q4 ouvert, vérifier la résistance d'isolement de vos conducteurs. La norme NF C 15-100 prescrit pour les installations électriques les valeurs de la tension d'essai ainsi que la résistance d'isolement minimale (500 VDC et $0.5 \text{ M}\Omega$ pour une tension nominale de 50 à 500 VAC)

Nom	Borne	Borne	Absence de court- circuit	Commentaires
Q0	Borne 2 de Q0	Borne 4 de Q0		

Quels sont les problèmes rencontrés ?

Problèmes rencontrés					

2.4 Conclusion sur la réalisation.

Après avoir implanté, raccordé et contrôlé le tableau général basse tension, faire une conclusion et une remontée des difficultés à la hiérarchie :

 	• • • • • • • • • • • • • • • • • • • •	

