

Concepteur de solutions didactiques

ERM AUTOMATISMES INDUSTRIELS

561, allée de Bellecour Tél : 04 90 60 05 68 84200 Carpentras Fax: 04 90 60 66 26

Site: www.erm-automatismes.com
E-mail: contact@erm-automatismes.com

REMBT RB10

BAC PRO MELEC

ACTIVITE DE RACCORDEMENT ET CABLAGE

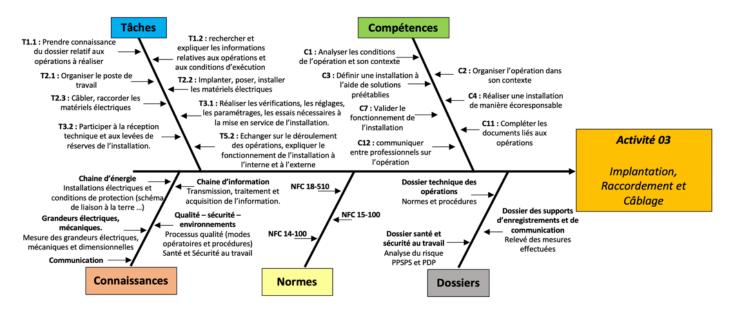
SECONDE 2^{EME}

TRIMESTRE

IMPLANTATION, RACCORDEMENT ET CABLAGE DU TABLEAU D'ALIMENTATION

DOSSIER PEDAGOGIQUE

1 0	RGANISATION PEDAGOGIQUE:	1
1.1	Données pédagogiques	1
1.2	Mise en situation	1
1.3	Secteur d'activité	2
1.4	Objectifs pédagogiques	2
1.5	Critères d'évaluation	2
1.6	Compétences évalués sur CPro STI	2
1.7	Observations	2
2 IN	ADLANTATION DU COFEDET D'ALIMENTATION	_
	MPLANTATION DU COFFRET D'ALIMENTATION	
2.1	Vérification du matériel installé – coffret d'alimentation	3
3 R	ACCORDEMENT DU TABLEAU D'ALIMENTATION	4
4 R	EALISATION DES CONTROLES HORS TENSION	
4.1		
	Contrôle de l'absence de court-circuit	
4.3	Contrôle de l'équipotentialité des masses.	į
4.4	Contrôle d'isolement	(
5 C	OMMUNICATION	G
5 4	Rendre compte à la hiérarchie	
J. I	Renure comple a la merarchie	(


ACTIVITE / SCENARIO

IMPLANTATION ET RACCORDEMENT DU TABLEAU D'ALIMENTATION.

1 ORGANISATION PEDAGOGIQUE:

1.1 Données pédagogiques

1.2 Mise en situation

Pour faire face aux mutations du paysage énergétique, il est nécessaire de moderniser le système électrique. Le contexte français et européen, dans lequel se sont développés les réseaux électriques, conduit à privilégier le déploiement des technologies de Smart Grids plutôt que le remplacement et le renforcement massif des réseaux.

L'intégration des nouvelles technologies de l'information et de la communication aux réseaux les rendra communicants et permettra de prendre en compte les actions des acteurs du système électrique, tout en assurant une livraison d'électricité plus efficace, économiquement viable et sûre.

Le système électrique sera ainsi piloté de manière plus flexible pour gérer les contraintes telles que l'intermittence des énergies renouvelables et le développement de nouveaux usages tels que le véhicule électrique. Ces contraintes auront également pour effet de faire évoluer le système actuel, où l'équilibre en temps réel est assuré en adaptant la production à la consommation, vers un système où l'ajustement se fera davantage par la demande, faisant ainsi du consommateur un véritable acteur.

Le développement, la maintenance et la sécurisation des réseaux électriques constituent un enjeu crucial et une priorité stratégique pour pouvoir assurer un développement économique durable et une lutte efficace contre la pauvreté.

Les compagnies nationales d'électricité et les autres acteurs du secteur en sont tous conscients, mais sont souvent confrontés à des situations complexes, de rareté et du coût des approvisionnements, de conditions d'exploitation ou de maintenance difficile des matériels, qui freinent le développement des réseaux ou peuvent même les contraindre à des délestages, générant un manque à gagner et une insatisfaction de leurs clients.

REMBT & Contrôleur général Smart Grid est un système de distribution de l'énergie électrique entre le point de raccordement réseau et les points de livraison conformément à la norme NF C 14-100. Il intègre un réseau de communication et un contrôleur général indispensable dans le concept de Smart Grid. Ce système représente l'infrastructure de puissance et de communication d'écoquartier, réseau électrique intelligent

- ✓ Distribuer l'énergie électrique
- ✓ Assurer la communication entre les différents consommateurs
- ✓ Optimiser les consommations et la performance énergétique avec un contrôle/commande

1.3 <u>Secteur d'activité</u>

Secteurs : « Réseaux » et « Infrastructures ».

1.4 Objectifs pédagogiques

L'élève devra Implanter et câbler le tableau d'alimentation du REMBT, mettant en place le raccordement au réseau électrique de l'établissement.

1.5 Critères d'évaluation

	APTITUDES PROFESSIONNELLES	<u>:</u>	•	0
AP1	Faire preuve de rigueur et de précision			
AP2	Faire preuve d'esprit d'équipe			
AP3	Faire preuve de curiosité et d'écoute			
AP4	Faire preuve d'initiative			
AP5	Faire preuve d'analyse critique			

1.6 Compétences évalués sur CPro STI

•	A N	E		
C1-CO1 Analyser les conditions de l'opération et son contexte				
Les informations nécessaires sont recueillies				
Les contraintes techniques et d'exécution sont repérées				
Les risques professionnels sont évalués				
C2-CO2 Organiser l'opération dans son contexte				
Après inventaire, les matériels, équipements et outillages manquants sont listés				
Le poste de travail est organisé avec ergonomie		$\exists \Box$		
C3 Définir une installation à l'aide de solutions préétablies				_
La solution technique proposée répond au besoin du client et elle est pertinente				
C4-CO3 Réaliser une installation de manière éco-responsable			_	
Les câblages et les raccordements sont réalisés conformément aux prescriptions et règles de l'art				
Les autocontrôles sont réalisés et les fiches d'autocontrôles sont complétées				
C7-C05 Valider le fonctionnement de l'installation				
Le fonctionnement est conforme aux spécifications du cahier des charges (y compris celles liées à l'efficacité énergétique)				
C11 Compléter les documents liés aux opérations				
Les informations nécessaires sont identifiées				
C12-C08 Communiquer entre professionnels sur l'opération				
Les contraintes techniques liées à la performance énergétique de l'installation sont expliquées				
Les difficultés sont remontées à la hiérarchie				
1.7 <u>Observations</u>				

2 IMPLANTATION DU COFFRET D'ALIMENTATION.

En vous aidant, du dossier technique de l'installation, vous aurez à vérifier les caractéristiques de la batterie

2.1 <u>Vérification du matériel installé – coffret d'alimentation.</u>

Appareils	Désignation	Présence	État Matériel	CE et/ou NF	Positionnement correct
Q0	Interrupteur sectionneur TRI 63A Schneider VCF3 Pôle de neutre Schneider VZ12	□ OUI □ NON	□ OK □ NOK	□ CE	□ OUI □ NON
H1	Voyant Blanc 22,5, lampe à LED 230 VAC Siemens 3SU1156-6AA60-1AA0	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
Q1	Disjoncteur C60N tétrapoaire 63A courbe C Schneider A9F77463 Bloc différentiel instantané vgi C60 30 mA SI tétrapolaire / 63A Schneider A9V31463	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
E1	Compteur énergie modulaire triphasé, entrée direct 80A, Ethernet Modbus TCP Socomec 48503054	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
X1	Bloc de jonction RK50 Conta-Clip 1120.2	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON
XF1	Passe cloison RJ45	□ OUI □ NON	□ OK □ NOK	□ CE □ NF	□ OUI □ NON

3 RACCORDEMENT DU TABLEAU D'ALIMENTATION

En tenant compte du tableau de raccordement définissant les sections et les bornes des différents conducteurs, à l'aide du schéma du dossier technique (SCRB1000001...).

Pour ne pas se tromper, penser à surligner sur le schéma chaque conducteur posé.

Repère du conducteur	Couleur	Section	Tenant	Aboutissant	Connexion réalisée	Problèmes rencontrés
101	BLEU	16 mm²	Neutre Réseau Établissement	Borne N en amont de Q0	□ OUI □ NON	
102	NOIR	16 mm²	Phase 1 Réseau Établissement	Borne L1 de Q0	□ OUI □ NON	
103	NOIR	16 mm²	Phase 2 Réseau Établissement	Borne L2 de Q0	□ OUI □ NON	
104	NOIR	16 mm²	Phase 3 Réseau Établissement	Borne L3 de Q0	□ OUI □ NON	
	Vert Jaune	16 mm²	PE Réseau Établissement	PE de barre de terre		
105	BLEU	16 mm²	Borne N en aval de Q0	Borne 1 de Q1	□ OUI □ NON	
106	NOIR	16 mm²	Borne T1 de Q0	Borne 3 de Q1	□ OUI □ NON	
107	NOIR	16 mm²	Borne T2 de Q0	Borne 5 de Q1	□ OUI □ NON	
108	NOIR	16 mm²	Borne T3 de Q0	Borne 7 de Q1	□ OUI □ NON	
105	BLEU	1,5 mm²	Borne 1 de Q1	Borne X2 de H1	□ OUI □ NON	
106	NOIR	1,5 mm²	Borne 3 de Q1	Borne X1 de H1	□ OUI □ NON	
109	BLEU	16 mm²	Borne 2 de Q1	Borne 1 de X1	□ OUI □ NON	
110	NOIR	16 mm²	Borne 4 de Q1	Borne L1 企 de E1	□ OUI □ NON	
111	NOIR	16 mm²	Borne 6 de Q1	Borne L2 企 de E1	□ OUI □ NON	
112	NOIR	16 mm²	Borne 8 de Q1	Borne L3 ☆ de E1	□ OUI □ NON	
109	BLEU	16 mm²	Borne 1 de X1	Borne N de E1	□ OUI □ NON	
113	NOIR	16 mm²	Borne L1	Borne 2 de X1	□ OUI □ NON	
114	NOIR	16 mm²	Borne L2	Borne 3 de X1	□ OUI □ NON	
115	NOIR	16 mm²	Borne L3 ↓ de E1	Borne 4 de X1	□ OUI □ NON	

4 REALISATION DES CONTROLES HORS TENSION.

L'ouvrage ne doit pas être raccordé au réseau ou doit être consigné par le chargé de consignation

4.1 Contrôle visuel de l'installation.

Aucun conducteur tendu, conducteurs bien rangés, les conducteurs de puissance au fond, appareillages et conducteurs repérés et les couleurs respectées, Aucune partie de cuivre n'est visible

Conforme	Identifier les défauts

4.2 Contrôle de l'absence de court-circuit.

A l'aide d'un multimètre positionné sur testeur de continuité, Q0 ouvert et Q1 fermé, vérifier l'absence de court-circuit de la partie de puissance et d'alimentation entre les bornes suivantes :

Nom	Borne	Borne	Absence de court- circuit	Commentaires
	Borne N	Borne T1		
	Borne N	Borne T2	□ OUI □ NON	
Q0	Borne N	Borne T3	□ OUI □ NON	
	Borne T1	Borne T2	□ OUI □ NON	
	Borne T1	Borne T3		
	Borne T2	Borne T3		

4.3 Contrôle de l'équipotentialité des masses.

A l'aide d'un multimètre positionné sur testeur de continuité vérifier que l'ensemble des masses et des conducteurs PE sont bien interconnectés.

Borne 1	Borne 2	Continuité	Commentaires
Barre de terre du tableau	Armoire	□ OUI □ NON	
Barre de terre du tableau	Porte	□ OUI □ NON	

4.4 Contrôle d'isolement.

A l'aide d'un mégohmmètre, Q0 ouvert, vérifier la résistance d'isolement de vos conducteurs. La norme NF C 15-100 prescrit pour les installations électriques les valeurs de la tension d'essai ainsi que la résistance d'isolement minimale (500 VDC et $0.5 \text{ M}\Omega$ pour une tension nominale de 50 à 500 VAC)

Nom	Borne	Borne	Absence de court- circuit	Commentaires
	Borne N	Borne T1		
	Borne N	Borne T2		
Q0	Borne N	Borne T3		
	Borne T1	Borne T2		
	Borne T1	Borne T3		
	Borne T2	Borne T3		

Quels sont les problèmes rencontrés ?	Quels so	ont les	problèmes	rencontrés	?
---------------------------------------	----------	---------	-----------	------------	---

Problèmes rencontrés	

5 COMMUNICATION.

5.1 Rendre compte à la hiérarchie.

Effectuer le compte rendu à la hiérarchie sur les résultats de votre intervention de raccordement.

Faire référence aux contraintes du cahier des charges.

